If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-192p-208=0
a = 7; b = -192; c = -208;
Δ = b2-4ac
Δ = -1922-4·7·(-208)
Δ = 42688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{42688}=\sqrt{64*667}=\sqrt{64}*\sqrt{667}=8\sqrt{667}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-8\sqrt{667}}{2*7}=\frac{192-8\sqrt{667}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+8\sqrt{667}}{2*7}=\frac{192+8\sqrt{667}}{14} $
| 3(2x-1)+7=6x-3-2(2-3x) | | 4(2-x)+1=2x+2=5(1-4x) | | (4x-2)^2+6x=25 | | 162/x=14/28 | | 12x-6x+5+4x=-10x+7 | | 28-8y=20 | | 186/x=12/24 | | 5x-4=(1/5)(5+20x) | | 29x-13=14x-13 | | (11x-4)/x=3 | | 90=2x+x+20+50 | | 19x^2+25x=0 | | 180=2x+20+x+50 | | -1-3(1+6x)=-112 | | (x+1)/(x-1)=((-3)/(x+3))+((8)/(x²+2x-3)) | | 4.5x=7020 | | 180=x+50 | | 90=x+50 | | 2.75d=77 | | 180=2x+20+x+50+90 | | 180=3x+160 | | 90=3x+70 | | 4(2=x)+1=2x+2-5(1-4x) | | 20+5x=32 | | 180=46+2x-4 | | X-1+3x=x+7 | | 3(2x-1)+7=5x-3-2(2-4x) | | /5x+4-(2x-63)=12x+44 | | 5-2z=3z-7z+25 | | 4y-8+3=32 | | 1/2(x+1)^2=2(x+4)^2 | | -4p+2p=-16 |